Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Mol Cell Cardiol ; 191: 27-39, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38648963

ABSTRACT

Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.

2.
J Physiol ; 602(5): 791-808, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348881

ABSTRACT

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.


Subject(s)
Myocytes, Cardiac , Optogenetics , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Cell Membrane , Membrane Potentials , Action Potentials/physiology
3.
Circ Genom Precis Med ; 16(4): 363-371, 2023 08.
Article in English | MEDLINE | ID: mdl-37409452

ABSTRACT

BACKGROUND: The 2 sarcomere genes most commonly associated with hypertrophic cardiomyopathy (HCM), MYBPC3 (myosin-binding protein C3) and MYH7 (ß-myosin heavy chain), are indistinguishable at presentation, and genotype-phenotype correlations have been elusive. Based on molecular and pathophysiological differences, however, it is plausible to hypothesize a different behavior in myocardial performance, impacting lifetime changes in left ventricular (LV) function. METHODS: We reviewed the initial and final echocardiograms of 402 consecutive HCM patients with pathogenic or likely pathogenic MYBPC3 (n=251) or MYH7 (n=151) mutations, followed over 9±8 years. RESULTS: At presentation, MYBPC3 patients were less frequently obstructive (15% versus 26%; P=0.005) and had lower LV ejection fraction compared with MYH7 (66±8% versus 68±8%, respectively; P=0.03). Both HCM patients harboring MYBPC3 and MYH7 mutations exhibited a small but significant decline in LV systolic function during follow-up; however, new onset of severe LV systolic dysfunction (LV ejection fraction, <50%) was greater among MYBPC3 patients (15% versus 5% among MYH7; P=0.013). Prevalence of grade II/III diastolic dysfunction at final evaluation was comparable between MYBPC3 and MYH7 patients (P=0.509). In a Cox multivariable analysis, MYBPC3-positive status (hazard ratio, 2.53 [95% CI, 1.09-5.82]; P=0.029), age (hazard ratio, 1.03 [95% CI, 1.00-1.06]; P=0.027), and atrial fibrillation (hazard ratio, 2.39 [95% CI, 1.14-5.05]; P=0.020) were independent predictors of severe systolic dysfunction. No statistically significant differences occurred with regard to incidence of atrial fibrillation, heart failure, appropriate implanted cardioverter defibrillator shock, or cardiovascular death. CONCLUSIONS: MYBPC3-related HCM showed increased long-term prevalence of systolic dysfunction compared with MYH7, in spite of similar outcome. Such observations suggest different pathophysiology of clinical progression in the 2 subsets and may prove relevant for understanding of genotype-phenotype correlations in HCM.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Hypertrophic , Humans , Prevalence , Phenotype , Cardiomyopathy, Hypertrophic/epidemiology , Cardiomyopathy, Hypertrophic/genetics , Mutation , Cytoskeletal Proteins , Myosin Heavy Chains/genetics , Cardiac Myosins/genetics
5.
Elife ; 122023 03 16.
Article in English | MEDLINE | ID: mdl-36927816

ABSTRACT

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms, and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cytoskeletal Proteins , Animals , Humans , Mice , Cardiomyopathies/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Mice, Knockout , Muscle Proteins/metabolism , Myocardium/metabolism , Protein Isoforms/genetics
6.
Circ Res ; 132(5): 628-644, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36744470

ABSTRACT

BACKGROUND: The pathogenesis of MYBPC3-associated hypertrophic cardiomyopathy (HCM) is still unresolved. In our HCM patient cohort, a large and well-characterized population carrying the MYBPC3:c772G>A variant (p.Glu258Lys, E258K) provides the unique opportunity to study the basic mechanisms of MYBPC3-HCM with a comprehensive translational approach. METHODS: We collected clinical and genetic data from 93 HCM patients carrying the MYBPC3:c772G>A variant. Functional perturbations were investigated using different biophysical techniques in left ventricular samples from 4 patients who underwent myectomy for refractory outflow obstruction, compared with samples from non-failing non-hypertrophic surgical patients and healthy donors. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and engineered heart tissues (EHTs) were also investigated. RESULTS: Haplotype analysis revealed MYBPC3:c772G>A as a founder mutation in Tuscany. In ventricular myocardium, the mutation leads to reduced cMyBP-C (cardiac myosin binding protein-C) expression, supporting haploinsufficiency as the main primary disease mechanism. Mechanical studies in single myofibrils and permeabilized muscle strips highlighted faster cross-bridge cycling, and higher energy cost of tension generation. A novel approach based on tissue clearing and advanced optical microscopy supported the idea that the sarcomere energetics dysfunction is intrinsically related with the reduction in cMyBP-C. Studies in single cardiomyocytes (native and hiPSC-derived), intact trabeculae and hiPSC-EHTs revealed prolonged action potentials, slower Ca2+ transients and preserved twitch duration, suggesting that the slower excitation-contraction coupling counterbalanced the faster sarcomere kinetics. This conclusion was strengthened by in silico simulations. CONCLUSIONS: HCM-related MYBPC3:c772G>A mutation invariably impairs sarcomere energetics and cross-bridge cycling. Compensatory electrophysiological changes (eg, reduced potassium channel expression) appear to preserve twitch contraction parameters, but may expose patients to greater arrhythmic propensity and disease progression. Therapeutic approaches correcting the primary sarcomeric defects may prevent secondary cardiomyocyte remodeling.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Calcium/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Mutation , Calcium, Dietary/metabolism , Cytoskeletal Proteins/genetics
7.
Front Physiol ; 13: 1030920, 2022.
Article in English | MEDLINE | ID: mdl-36419836

ABSTRACT

Cardiomyocytes differentiated from human induced Pluripotent Stem Cells (hiPSC- CMs) are a unique source for modelling inherited cardiomyopathies. In particular, the possibility of observing maturation processes in a simple culture dish opens novel perspectives in the study of early-disease defects caused by genetic mutations before the onset of clinical manifestations. For instance, calcium handling abnormalities are considered as a leading cause of cardiomyocyte dysfunction in several genetic-based dilated cardiomyopathies, including rare types such as Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy. To better define the maturation of calcium handling we simultaneously measured action potential and calcium transients (Ca-Ts) using fluorescent indicators at specific time points. We combined micropatterned substrates with long-term cultures to improve maturation of hiPSC-CMs (60, 75 or 90 days post-differentiation). Control-(hiPSC)-CMs displayed increased maturation over time (90 vs 60 days), with longer action potential duration (APD), increased Ca-T amplitude, faster Ca-T rise (time to peak) and Ca-T decay (RT50). The progressively increased contribution of the SR to Ca release (estimated by post-rest potentiation or Caffeine-induced Ca-Ts) appeared as the main determinant of the progressive rise of Ca-T amplitude during maturation. As an example of severe cardiomyopathy with early onset, we compared hiPSC-CMs generated from a DMD patient (DMD-ΔExon50) and a CRISPR-Cas9 genome edited cell line isogenic to the healthy control with deletion of a G base at position 263 of the DMD gene (c.263delG-CMs). In DMD-hiPSC-CMs, changes of Ca-Ts during maturation were less pronounced: indeed, DMD cells at 90 days showed reduced Ca-T amplitude and faster Ca-T rise and RT50, as compared with control hiPSC-CMs. Caffeine-Ca-T was reduced in amplitude and had a slower time course, suggesting lower SR calcium content and NCX function in DMD vs control cells. Nonetheless, the inotropic and lusitropic responses to forskolin were preserved. CRISPR-induced c.263delG-CM line recapitulated the same developmental calcium handling alterations observed in DMD-CMs. We then tested the effects of micropatterned substrates with higher stiffness. In control hiPSC-CMs, higher stiffness leads to higher amplitude of Ca-T with faster decay kinetics. In hiPSC-CMs lacking full-length dystrophin, however, stiffer substrates did not modify Ca-Ts but only led to higher SR Ca content. These findings highlighted the inability of dystrophin-deficient cardiomyocytes to adjust their calcium homeostasis in response to increases of extracellular matrix stiffness, which suggests a mechanism occurring during the physiological and pathological development (i.e. fibrosis).

8.
Eur Heart J Open ; 2(3): oeac034, 2022 May.
Article in English | MEDLINE | ID: mdl-35919344

ABSTRACT

Aims: Ventricular cardiomyocytes from hypertrophic cardiomyopathy (HCM) patient hearts show prolonged action potential duration (APD), impaired intracellular Ca2+ homeostasis and abnormal electrical response to beta -adrenergic stimulation. We sought to determine whether this behaviour is associated with abnormal changes of repolarization during exercise and worsening of diastolic function, ultimately explaining the intolerance to exercise experienced by some patients without obstruction. Methods and results: Non-obstructive HCM patients (178) and control subjects (81) underwent standard exercise testing, including exercise echocardiography. Ventricular myocytes were isolated from myocardial samples of 23 HCM and eight non-failing non-hypertrophic surgical patients. The APD shortening in response to high frequencies was maintained in HCM myocytes, while ß-adrenergic stimulation unexpectedly prolonged APDs, ultimately leading to a lesser shortening of APDs in response to exercise. In HCM vs. control subjects, we observed a lesser shortening of QT interval at peak exercise (QTc: +27 ± 52 ms in HCM, -4 ± 50 ms in controls, P < 0.0001). In patients showing a marked QTc prolongation (>30 ms), the excessive shortening of the electrical diastolic period was linked with a limited increase of heart-rate and deterioration of diastolic function at peak effort. Conclusions: Abnormal balance of Ca2+- and K+-currents in HCM cardiomyocytes determines insufficient APD and Ca2+-transient shortening with exercise. In HCM patients, exercise-induced QTc prolongation was associated with impaired diastolic reserve, contributing to the reduced exercise tolerance. Our results support the idea that severe electrical cardiomyocyte abnormalities underlie exercise intolerance in a subgroup of HCM patients without obstruction.

9.
Front Physiol ; 13: 864547, 2022.
Article in English | MEDLINE | ID: mdl-35514357

ABSTRACT

Atrial dilation and atrial fibrillation (AF) are common in Hypertrophic CardioMyopathy (HCM) patients and associated with a worsening of prognosis. The pathogenesis of atrial myopathy in HCM remains poorly investigated and no specific association with genotype has been identified. By re-analysis of our cohort of thin-filament HCM patients (Coppini et al. 2014) AF was identified in 10% of patients with sporadic mutations in the cardiac Troponin T gene (TNNT2), while AF occurrence was much higher (25-75%) in patients carrying specific "hot-spot" TNNT2 mutations. To determine the molecular basis of arrhythmia occurrence, two HCM mouse models expressing human TNNT2 variants (a "hot-spot" one, R92Q, and a "sporadic" one, E163R) were selected according to the different pathophysiological pathways previously demonstrated in ventricular tissue. Echocardiography studies showed a significant left atrial dilation in both models, but more pronounced in the R92Q. In E163R atrial trabeculae, in line with what previously observed in ventricular preparations, the energy cost of tension generation was markedly increased. However, no changes of twitch amplitude and kinetics were observed, and there was no atrial arrhythmic propensity. R92Q atrial trabeculae, instead, displayed normal ATP consumption but markedly increased myofilament calcium sensitivity, as previously observed in ventricular preparations. This was associated with reduced inotropic reserve and slower kinetics of twitch contractions and, importantly, with an increased occurrence of spontaneous beats and triggered contractions that represent an intrinsic arrhythmogenic mechanism promoting AF. The association of specific TNNT2 mutations with AF occurrence depends on the mutation-driven pathomechanism (i.e., increased atrial myofilament calcium sensitivity rather than increased myofilament tension cost) and may influence the individual response to treatment.

10.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163054

ABSTRACT

To understand how pathology-induced changes in contractile protein isoforms modulate cardiac muscle function, it is necessary to quantify the temporal-mechanical properties of contractions that occur under various conditions. Pathological responses are much easier to study in animal model systems than in humans, but extrapolation between species presents numerous challenges. Employing computational approaches can help elucidate relationships that are difficult to test experimentally by translating the observations from rats and mice, as model organisms, to the human heart. Here, we use the spatially explicit MUSICO platform to model twitch contractions from rodent and human trabeculae collected in a single laboratory. This approach allowed us to identify the variations in kinetic characteristics of α- and ß-myosin isoforms across species and to quantify their effect on cardiac muscle contractile responses. The simulations showed how the twitch transient varied with the ratio of the two myosin isoforms. Particularly, the rate of tension rise was proportional to the fraction of α-myosin present, while the ß-isoform dominated the rate of relaxation unless α-myosin was >50%. Moreover, both the myosin isoform and the Ca2+ transient contributed to the twitch tension transient, allowing two levels of regulation of twitch contraction.


Subject(s)
Calcium/metabolism , Heart/physiology , Myosins/metabolism , Animals , Computer Simulation , Humans , Male , Mice , Myocardial Contraction , Protein Isoforms , Rats
11.
J Mol Cell Cardiol ; 166: 36-49, 2022 05.
Article in English | MEDLINE | ID: mdl-35139328

ABSTRACT

The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Cell Communication , Cell Differentiation , Extracellular Matrix/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
12.
J Clin Med ; 11(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35160308

ABSTRACT

Heart failure (HF) is a clinical syndrome defined by specific symptoms and signs due to structural and/or functional heart abnormalities, which lead to inadequate cardiac output and/or increased intraventricular filling pressure. Importantly, HF becomes progressively a multisystemic disease. However, in August 2021, the European Society of Cardiology published the new Guidelines for the diagnosis and treatment of acute and chronic HF, according to which the left ventricular ejection fraction (LVEF) continues to represent the pivotal parameter for HF patients' evaluation, risk stratification and therapeutic management despite its limitations are well known. Indeed, HF has a complex pathophysiology because it first involves the heart, progressively becoming a multisystemic disease, leading to multiorgan failure and death. In these terms, HF is comparable to cancer. As for cancer, surviving, morbidity and hospitalisation are related not only to the primary neoplastic mass but mainly to the metastatic involvement. In HF, multiorgan involvement has a great impact on prognosis, and multiorgan protective therapies are equally important as conventional cardioprotective therapies. In the light of these considerations, a revision of the HF concept is needed, starting from its definition up to its therapy, to overcome the old and simplistic HF perspective.

13.
Front Physiol ; 12: 750364, 2021.
Article in English | MEDLINE | ID: mdl-34867455

ABSTRACT

Proper three-dimensional (3D)-cardiomyocyte orientation is important for an effective tension production in cardiac muscle. Cardiac diseases can cause severe remodeling processes in the heart, such as cellular misalignment, that can affect both the electrical and mechanical functions of the organ. To date, a proven methodology to map and quantify myocytes disarray in massive samples is missing. In this study, we present an experimental pipeline to reconstruct and analyze the 3D cardiomyocyte architecture in massive samples. We employed tissue clearing, staining, and advanced microscopy techniques to detect sarcomeres in relatively large human myocardial strips with micrometric resolution. Z-bands periodicity was exploited in a frequency analysis approach to extract the 3D myofilament orientation, providing an orientation map used to characterize the tissue organization at different spatial scales. As a proof-of-principle, we applied the proposed method to healthy and pathologically remodeled human cardiac tissue strips. Preliminary results suggest the reliability of the method: strips from a healthy donor are characterized by a well-organized tissue, where the local disarray is log-normally distributed and slightly depends on the spatial scale of analysis; on the contrary, pathological strips show pronounced tissue disorganization, characterized by local disarray significantly dependent on the spatial scale of analysis. A virtual sample generator is developed to link this multi-scale disarray analysis with the underlying cellular architecture. This approach allowed us to quantitatively assess tissue organization in terms of 3D myocyte angular dispersion and may pave the way for developing novel predictive models based on structural data at cellular resolution.

14.
Cell Mol Life Sci ; 78(23): 7309-7337, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704115

ABSTRACT

Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly ß-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & ß-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.


Subject(s)
Heart Atria/metabolism , Heart Ventricles/metabolism , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Ventricular Myosins/metabolism , Amino Acid Sequence , Atrial Function/physiology , Blood Pressure/physiology , Humans , Myocytes, Cardiac/metabolism , Myofibrils/physiology , Protein Domains , Protein Isoforms , Ventricular Function/physiology
15.
Elife ; 102021 09 24.
Article in English | MEDLINE | ID: mdl-34558411

ABSTRACT

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic, and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.


Subject(s)
Cardiomyopathy, Dilated/genetics , Muscle Proteins/genetics , Pressure/adverse effects , Animals , Calcium/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Connectin/metabolism , Male , Mice, Knockout , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Myocardium , Myocytes, Cardiac/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sarcomeres , Two-Hybrid System Techniques
16.
J Gen Physiol ; 153(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33891673

ABSTRACT

Mavacamten (MYK-461) is a small-molecule allosteric inhibitor of sarcomeric myosins being used in preclinical/clinical trials for hypertrophic cardiomyopathy treatment. A better understanding of its impact on force generation in intact or skinned striated muscle preparations, especially for human cardiac muscle, has been hindered by diffusional barriers. These limitations have been overcome by mechanical experiments using myofibrils subject to perturbations of the contractile environment by sudden solution changes. Here, we characterize the action of mavacamten in human ventricular myofibrils compared with fast skeletal myofibrils from rabbit psoas. Mavacamten had a fast, fully reversible, and dose-dependent negative effect on maximal Ca2+-activated isometric force at 15°C, which can be explained by a sudden decrease in the number of heads functionally available for interaction with actin. It also decreased the kinetics of force development in fast skeletal myofibrils, while it had no effect in human ventricular myofibrils. For both myofibril types, the effects of mavacamten were independent from phosphate in the low-concentration range. Mavacamten did not alter force relaxation of fast skeletal myofibrils, but it significantly accelerated the relaxation of human ventricular myofibrils. Lastly, mavacamten had no effect on resting tension but inhibited the ADP-stimulated force in the absence of Ca2+. Altogether, these effects outline a motor isoform-specific dependence of the inhibitory effect of mavacamten on force generation, which is mediated by a reduction in the availability of strongly actin-binding heads. Mavacamten may thus alter the interplay between thick and thin filament regulation mechanisms of contraction in association with the widely documented drug effect of stabilizing myosin motor heads into autoinhibited states.


Subject(s)
Benzylamines , Myofibrils , Animals , Humans , Muscle Contraction , Muscle, Skeletal , Myocardium , Rabbits , Uracil/analogs & derivatives
17.
J Mol Cell Cardiol ; 155: 112-124, 2021 06.
Article in English | MEDLINE | ID: mdl-33636222

ABSTRACT

One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca2+ from cTnC, k-Ca, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k-Ca, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.


Subject(s)
Models, Biological , Mutation , Myocardial Contraction , Myofibrils/genetics , Myofibrils/metabolism , Troponin C/genetics , Algorithms , Alleles , Animals , Biomarkers , Calcium/metabolism , Humans , Mice , Mice, Transgenic , Models, Molecular , Myofibrils/chemistry , Protein Binding , Sarcomeres/metabolism , Structure-Activity Relationship , Troponin C/chemistry , Troponin I/genetics , Troponin I/metabolism
18.
J Gen Physiol ; 153(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33512405

ABSTRACT

Understanding the dynamics of a cardiac muscle twitch contraction is complex because it requires a detailed understanding of the kinetic processes of the Ca2+ transient, thin-filament activation, and the myosin-actin cross-bridge chemomechanical cycle. Each of these steps has been well defined individually, but understanding how all three of the processes operate in combination is a far more complex problem. Computational modeling has the potential to provide detailed insight into each of these processes, how the dynamics of each process affect the complexity of contractile behavior, and how perturbations such as mutations in sarcomere proteins affect the complex interactions of all of these processes. The mechanisms involved in relaxation of tension during a cardiac twitch have been particularly difficult to discern due to nonhomogeneous sarcomere lengthening during relaxation. Here we use the multiscale MUSICO platform to model rat trabecular twitches. Validation of computational models is dependent on being able to simulate different experimental datasets, but there has been a paucity of data that can provide all of the required parameters in a single experiment, such as simultaneous measurements of force, intracellular Ca2+ transients, and sarcomere length dynamics. In this study, we used data from different studies collected under similar experimental conditions to provide information for all the required parameters. Our simulations established that twitches either in an isometric sarcomere or in fixed-length, multiple-sarcomere trabeculae replicate the experimental observations if models incorporate a length-tension relationship for the nonlinear series elasticity of muscle preparations and a scheme for thick-filament regulation. The thick-filament regulation assumes an off state in which myosin heads are parked onto the thick-filament backbone and are unable to interact with actin, a state analogous to the super-relaxed state. Including these two mechanisms provided simulations that accurately predict twitch contractions over a range of different conditions.


Subject(s)
Calcium , Sarcomeres , Animals , Heart , Muscle Contraction , Myocardial Contraction , Myosins , Rats
19.
J Muscle Res Cell Motil ; 42(1): 47-57, 2021 03.
Article in English | MEDLINE | ID: mdl-31745760

ABSTRACT

Full muscle relaxation happens when [Ca2+] falls below the threshold for force activation. Several experimental models, from whole muscle organs and intact muscle down to skinned fibers, have been used to explore the cascade of kinetic events leading to mechanical relaxation. The use of single myofibrils together with fast solution switching techniques, has provided new information about the role of cross-bridge (CB) dissociation in the time course of isometric force decay. Myofibril's relaxation is biphasic starting with a slow seemingly linear phase, with a rate constant, slow kREL, followed by a fast mono-exponential phase. Sarcomeres remain isometric during the slow force decay that reflects CB detachment under isometric conditions while the final fast relaxation phase begins with a sudden give of few sarcomeres and is then dominated by intersarcomere dynamics. Based on a simple two-state model of the CB cycle, myofibril slow kREL represents the apparent forward rate with which CBs leave force generating states (gapp) under isometric conditions and correlates with the energy cost of tension generation (ATPase/tension ratio); in short slow kREL ~ gapp ~ tension cost. The validation of this relationship is obtained by simultaneously measuring maximal isometric force and ATP consumption in skinned myocardial strips that provide an unambiguous determination of the relation between contractile and energetic properties of the sarcomere. Thus, combining kinetic experiments in isolated myofibrils and mechanical and energetic measurements in multicellular cardiac strips, we are able to provide direct evidence for a positive linear correlation between myofibril isometric relaxation kinetics (slow kREL) and the energy cost of force production both measured in preparations from the same cardiac sample. This correlation remains true among different types of muscles with different ATPase activities and also when CB kinetics are altered by cardiomyopathy-related mutations. Sarcomeric mutations associated to hypertrophic cardiomyopathy (HCM), a primary cardiac disorder caused by mutations in genes encoding sarcomeric proteins, have been often found to accelerate CB turnover rate and increase the energy cost of myocardial contraction. Here we review data showing that faster CB detachment results in a proportional increase in the energetic cost of tension generation in heart samples from both HCM patients and mouse models of the disease.


Subject(s)
Myocardial Contraction/genetics , Sarcomeres/metabolism , Animals , Humans , Mice , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...